
2-Way Simultaneous Doppler and Ranging 
for Multiple Spacecraft at Mars

Kar-Ming Cheung, Dariush Divsalar, Scott Bryant, Charles Lee*

March 3 - 10, 2018

IEEE Aerospace Conference 2018

Big Sky, Montana

*Jet Propulsion Laboratory, California Institute of Technology

© 2018, California Institute of Technology.  Government sponsorship acknowledged.  



2

Outline of Talk

PART 1 - BACKGROUND AND SYSTEM CONCEPT

➢ OVERVIEW OF THE PROPOSED MARS REGIONAL NAVIGATION SATELLITE SYSTEM (MRNSS)

➢ IMPORTANCE OF ACCURATE NAVIGATION SATELLITES ORBIT DETERMINATION (OD)

➢ CHALLENGES OF DEEP SPACE TRACKING/NAVIGATION FOR MULTIPLE SPACECRAFT

PART 2 - SIMULTANEOUS 2-WAY DOPPLER/RANGING

➢ SYSTEM APPROACH: A COLLABORATIVE FLIGHT-GROUND ARCHITECTURE

➢ DIFFERENT DOPPLER AND DOPPLER RATE OF MARS ASSETS

➢ SIGNAL STRUCTURE: RELATIONSHIP BETWEEN CARRIER FREQUENCY AND RANGE CLOCK

➢ FLIGHT RADIO UPGRADE: SMART SWEEPING ALGORITHM

➢ GROUND PROCESSING: MULTIPLE COPIES OF RECEIVER RANGING PROCESSORS (RRP’S)



Part 1: Background and System Concept
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Proposed Mars Regional Navigation Satellite System (1) 
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• We have been working on the system concept of a low-cost low-maintenance Mars 
Regional Navigation Satellite System (MRNSS) [1] with the following key principles

• Capitalize on the build-up of orbiting and surface infrastructures on Mars during the 
human Mars exploration era [2][3][4]

• Leverage on a new geometric trilateration method that simultaneously performs 
absolute positioning and relative positioning [5][6]

• Introduce the concept of using relative positioning that provides regional navigation 
services in the vicinity of a human Mars landing site (~100 km), thereby relieving the 
stringent requirements on orbit determination (OD) of Mars navigation satellites
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Proposed Mars Regional Navigation Satellite System (2) 



Orbits of the Notional Mars Navigation Nodes (3-D View)
Utopia Planitia:   182.5

o
 due East, 46.7

o
 due North 

Aerostationary orbiter 1 (Areo45):  162.5
o
 due East 

Aerostationary orbiter 2 (Areo90):  207.5
o
 due East 

Aerosynchronous orbiter (Areo68): 180
o
 due East and 20

o
 inclined 

Deep Space Habitat (Mars48hr):  180
o
 due East, 149.5

o
 inclined 

	

Proposed Mars Regional Navigation Satellite System (3) 



Orbits of the Notional Mars Navigation Nodes Projected on Mars Surface (2-D View)

Proposed Mars Regional Navigation Satellite System (4) 



Importance of Accurate Navigation Satellites 
Orbit Determination

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	
0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 0.00	 3273.85	 6547.69	 13095.39	 32738.48	 65476.99	 196431.3	 229169.9	

0.10	cm	 11.27	 3273.70	 6547.54	 13095.23	 32738.32	 65476.82	 196431.1	 229169.7	
0.25	cm	 28.19	 3273.56	 6547.35	 13095.01	 32738.08	 65476.58	 196430.9	 229169.5	

0.50	cm	 56.37	 3273.51	 6547.12	 13094.69	 32737.71	 65476.19	 196430.5	 229169.1	

1.00	cm	 112.74	 3274.15	 6547.03	 13094.24	 32737.04	 65475.45	 196429.7	 229168.3	
2.00	cm	 225.48	 3278.35	 6548.30	 13094.06	 32735.98	 65474.10	 196428.1	 229166.7	

5.00	cm	 563.71	 3313.95	 6563.76	 13099.34	 32735.15	 65471.23	 196423.9	 229162.4	

Table	1.	s3D	Absolute	Localization	Error	standard	deviation	(cm)	of	the	New	Scheme.	PDOP=113.17.	
	
	

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 14.43	 21.57	 35.07	 65.44	 160.06	 319.04	 956.04	 1115.33	
0.10	cm	 21.59	 26.82	 38.47	 67.27	 160.75	 319.32	 956.05	 1115.32	

0.25	cm	 42.77	 45.58	 53.22	 76.58	 164.76	 321.27	 956.58	 1115.75	

0.50	cm	 81.89	 83.33	 87.69	 103.45	 178.67	 328.48	 958.82	 1117.63	
1.00	cm	 161.95	 162.62	 164.84	 173.62	 226.38	 356.41	 968.34	 1125.72	

2.00	cm	 323.00	 323.28	 324.34	 328.78	 359.12	 452.05	 1006.71	 1158.71	

5.00	cm	 806.95	 806.99	 807.34	 808.99	 821.36	 865.36	 1246.30	 1371.59	

Table	2.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	100	km.	Sigma	=	100	m.	Delta	=	100	m.	

	
	

Our	Proposed	

Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	

P
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0	cm	 0.14	 1.59	 3.18	 6.35	 15.87	 31.73	 95.20	 111.07	

0.10	cm	 16.03	 16.10	 16.32	 17.20	 22.47	 35.45	 96.42	 112.10	
0.25	cm	 40.08	 40.10	 40.18	 40.53	 42.99	 50.93	 103.02	 117.79	

0.50	cm	 80.15	 80.16	 80.19	 80.36	 81.59	 85.99	 123.99	 136.48	

1.00	cm	 160.31	 160.30	 160.32	 160.39	 160.97	 163.19	 185.83	 194.34	
2.00	cm	 320.62	 320.61	 320.61	 320.63	 320.89	 321.95	 333.77	 338.52	

5.00	cm	 801.54	 801.53	 801.52	 801.52	 801.58	 801.93	 806.47	 808.38	

Table	3.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	10	km.	Sigma	=	100	m.	Delta	=	100	m.	

	

200 – 400 folds 

improvement

in RMSE accuracy

Sigma: media delay

Delta: clock bias



Challenges of Deep Space Tracking/Navigation 
for Multiple Spacecraft

• Traditional deep space tracking techniques include Doppler, ranging, and delta-DOR

• 2-Way Doppler/ranging requires tight coordination between ground and flight 

(Doppler compensation), and one ground station tracking one spacecraft (1-to-1)

• Delta-DOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)

• Tracking requires tying up an antenna for a long time [7].  When number of missions 

increase, and for missions with multiple spacecraft, there might not be enough DSN 

antenna assets to meet missions’ communications and tracking needs 

• There is a desire to extend the current deep space tracking techniques to support 

multiple spacecraft in a beam to improve the antenna usage efficiency

• Some interesting characteristics:

– 2-way Doppler and ranging requires tight collaboration between ground and spacecraft. 

When multiple spacecraft are involved, overall system can be brittle

– Delta-DOR is one-way, and depends on delays of signal arrival.  Overall system is more 

robust
9



Part 2: 2-Way Simultaneous Doppler/Ranging
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Simultaneous Doppler/Ranging: System Approach
A Collaborative Flight-Ground Architecture (1)

• Assume Doppler/ranging in X-band, which supports low rate commands/telemetry

• The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna

• For N orbiters, the downlinks operate in N allocated frequency bands separated by 
N-1 guard bands to prevent interference

• Collaborative flight-ground architecture: 

• The N orbiters time-share a single uplink; commands differentiated by SCID

• The ground “Doppler-compensates” the uplink signal in either way:

• With respective to the Mars center

• With respective to the average (centroid) of Doppler’s of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler.  Preliminary 
simulations: residual Doppler and Doppler rate are bounded  by 45 KHz & 2.6 Hz/s



Simultaneous Doppler/Ranging: System Approach
A Collaborative Flight-Ground Architecture (2)

• Flight radio upgrades:

– A different turn-around-ratio for each spacecraft so the same uplink would be 
coherently “turned-around” to modulate the telemetry and ranging signals on a 
different allocated downlink frequency

– A well-designed tracking loop that can sweep, acquire, and track the unknown uplink 
carrier phase and high residual Doppler frequency

• Ground upgrades: 

• One ground antenna receives all N downlink signals with different carrier frequencies 
via Multiple Spacecraft Per Aperture (MSPA)

• Each signal stream is extracted via band-pass filtering and down-converted to IF for 
telemetry, Doppler, and range processing



Simultaneous Doppler/Ranging 
Doppler and Doppler Rate Profiles



Simultaneous Doppler/Ranging 
Doppler and Doppler Rate Residuals for Mars Center Strategy



Simultaneous Doppler/Ranging 
Doppler and Doppler Rate Residuals for Centroid Strategy



Simultaneous Doppler/Ranging
Signal Structure (1)

• Transmitted uplink signal

• 𝑓𝑇 is the uplink carrier frequency, 𝛼𝑢is a function of time that accounts for the 
Doppler effect on the uplink, Pc(t) is the ranging signal taking values of ∓1 with chip 
rate Rc, and 𝜃 is ranging modulation index

• The range clock is 
𝑅𝑐

2
= 𝛼𝑢𝛽𝑓𝑇, where

C is an integer and is a ranging parameter

• The range clock also experience a Doppler effect and appears at the spacecraft with 
a frequency 𝛼𝑢𝛽𝑓𝑇

• The uplink signal after filtering can be represented as 

S
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• The PLL provide 2 cos[2𝜋𝛼𝑢𝑓𝑇t] with any additional non-compensated residual 
Doppler and Doppler rate.  This carrier is used to down convert the 2nd term to 
baseband to get the ranging signal

• The ranging signal is modulated onto the downlink carrier 
where G is the turn-around ratio and 𝛼𝐷is a function of time that accounts for the 
Doppler effect on the downlink

• Similarly the range clock is 
𝑅𝑐

2
= 𝛼𝑢𝛼𝐷𝛽𝑓𝑇

• When in-lock the Ground PLL provide 2 cos[2𝜋𝛼𝑢𝛼𝐷𝐺𝑓𝑇t].  This carrier is used to down 
convert the received signal to baseband to get the ranging signal

• The ratio of the range clock and the received carrier frequency is 𝛽/G

• “Doppler-rate aiding” [9] uses accurate measurements of the downlink carrier frequency 
provided by the PLL and multiplied with 𝛽/G to give an accurate estimate of the received 
range clock frequency – the rate of change of the range clock phase

• A local model of the received ranging signal is constructed, which has the same rate of 
change of phase as the received range clock.  This Doppler-shifted reference is used to 
sample the Doppler-shifted ranging signal, producing un-shifted samples for accurate 
measurements of range

2 sin[2p a
U
a
D
G f

T
t]

Simultaneous Doppler/Ranging
Signal Structure (2)
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Simultaneous Doppler/Ranging: 
Spacecraft Radio Schematic



Simultaneous Doppler/Ranging: Smart PLL Tracking

• The first term of (1) is residual carrier and can be tracked with a PLL with a 
controlled sweeping frequency

• Due to high residual Doppler, a smart sweeping algorithm is needed 

– Other sweeping approaches are FFT and Doppler predicts

• The Electra sweeping approach is static and memoryless (no prior knowledge of 
past sample)

– Use constant frequency step fstep, move from f1 (min) to f2 (max) to compare threshold, 
and repeat

• The smart sweeping algorithm has the following characteristics:

– Use multiple thresholds (3), and change fstep when a threshold is reached

– Compare current parameter PK with PK-1 in prior frequency interval to determine the 
sweeping direction – increase or decrease the sweeping frequency



Simultaneous Doppler/Ranging: 
Current Straight-Forward Electra Sweeping Algorithm



Simultaneous Doppler/Ranging: 
Flight Radio Smart Frequency Sweeping Algorithm

P > Th1

f=f + q fstep2

f > f2set f=f1
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step freq. fstep1, fstep2 ,fstep3 , and thresholds Th1 ,Th2 ,Th3

Input
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no
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Simultaneous Doppler/Ranging: 
High-Level Ground System Schematic and Data Flow

f1 f2

f3

fU

RRP1

RRP2

RRP3

RRP – Receiver Ranging Processor [7]
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